Miyazaki International College Course Syllabus Fall 2022

Course Title (Credits)	IDS313 - Algorithmic Thought (3 credits)	
Course Designation for TC	N/A	
Content Teacher		
Instructor	Anderson Passos, Ph.D.	
E-mail address	apassos@sky.miyazaki-mic.ac.jp	
Office/Ext	学部長室	
Office hours	月曜一金曜 14:00-16:00	

About this instructor:

Anderson has graduated from Computer Science and worked in the IT industry for over 14 years, including 4 years of experience as System Engineer in Tokyo, Japan.

パッソス先生はコンピュータサイエンスを卒業し、14 年以上にわたり IT 業界で働きました。これには、日本の東京でシステムエンジニアとして4年間の経験があります。

Course Description:

Critical thinking is a requirement in everything we do. Being able to evaluate the surroundings (the context) and come up with a solution will dictate students' development personally and professionally. Students will learn how to organize their ideas and to connect their thoughts through the development and resolution of algorithms. Students will also have the chance to experiment with real algorithm development through the application of basic programming language skills. This course is highly recommended for all students planning to take Fundamentals of Computer Programming.

Course Goals/Objectives:

This course will provide students with tools for developing a critical sense of problem analysis and organization of ideas. They will often be challenged with algorithms that will gradually increase in difficulty level as students' problem solving abilities evolve. Students will learn about:

- Problem interpretation
- Problem/Solution evaluation
- Procedural thinking
- Critical thinking
- Practice algorithmic problem solving with minimal aid of computers, emphasizing paperbased strategies.
- Basic contact with computer programming

Teaching Methodology:

Course objectives will be achieved through a variety of active learning teaching strategies, including but not limited to:

Active Learning Teaching Strategy	Course Schedule
Interactive lectures with note taking	Every class
Pause for Reflection	Every class
Pair & Group work	Every class
Simulation and Experiments	Final Project development

Tentative	Course	Schedule
Tomative	000130	Ochedule

Day	Торіс	Content/Activities			
1		Syllabus reviewIntroduction to course topics			
2	Introduction	Multiple solution problemsActivity: People attending an event			
3		How do an algorithm workBlack box concept			
4		- Structured language			
5	Algorithm Structure	 Understanding algorithms Understanding programs 			
6		 Computer model Address vs data Basic computer instructions 			
7		Instruction executionProgram execution			
8		 Introducing abstraction Instructions repetitions 			
9		- Algorithms and programing languages			
10	Elementary Concepts	 Problem breakdown Activity: Calculating roots of a second degree equation 			

11		Variables inside repetitionsConditional statements		
12	Elementary Techniques	 Repetitions inside conditions Conditions inside repetitions Activity: Checking if a number is odd or even 		
13	Technical Applications	 Fibonacci Factorial Series Prime numbers 		
14		- Functions vs Procedures		
15		 Modularity Code reuse Legibility Adding comments 		
16	Functions and Procedures	 Main program Global variables Local variables 		
17		 Using functions and procedures Changing variables inside functions Parameters by value Parameter by reference 		
18		Complex data typesData access		
19		Linked data structuresPersistent data structures		
20	Data structures	ArraysAssociative arrays		
21		- Graphs - Matrix		
22	Sorting algorithms	Algorithm designAlgorithm comparison		

23		- Insert - Selection
24		- Merge - Heapsort - Quicksort
25		- Bubble - Shell - Comb
26		- Counting - Bucket - Radix
27		Program designProgram Documentation
28	Computer Programming	Software Design SpecificationSoftware Development
29		Software flowUser interface and accessibility
30		- Content review for finals
	Finals	
Course Policies	s (Attendance, etc.)	·

Student Responsibilities

As a class member, you are responsible for attending all classes and arriving on time, for participating as a member of a group, and for completing and handing in all assigned work.

Attendance and Lateness

- You can be absent a maximum of 4 times
- If you are more than 20 minutes late, you will be given an absence
- Two lateness are equal to one absence

If you sum up more than 4 absences (e.g. 3 absences and 3 lateness), you will be asked to withdraw from the course. Failing to do so will result in an automatic "F" grade.

Homework

The homework should be handed in at the beginning of every class. All homework submitted

after that will **not** be considered.

Excused Absences

Excused Absence forms should be brought to instructors as soon as possible. If you know you will be missing classes talk to us beforehand so we can arrange make-up work.

Late Assignments

It is your responsibility to look for the instructor and check what assignments are due. Also, if you miss a class, it is your responsibility to contact the instructors to get handouts and explanations (missing a class is no excuse for not handing in homework).

Plagiarism and Intellectual Honesty

Plagiarism is representing someone else's intellectual property--words, ideas, or images-as your own. It is a very serious academic offense and plagiarized work is not accepted in this course. Ask one of the instructors if you have any questions about this. You are responsible for understanding what plagiarism is and knowing how to avoid it in your work.

Required Materials:

- notepad

Class Preparation and Review

Students are expected to spend at least one hour preparing for every hour of lesson, and one hour reviewing and doing homework. Make sure you review your notes after each class and make sure you understand the topics covered. Instructors are available outside the classroom in case students need additional assistance (please check office hours on the first page of this syllabus).

Very often, you will have homework assignments. Make sure you review those before coming to the next class. Also, check the class Content/Activities so you can be prepared for the class.

Grades and Grading

Homework	10%
Projects	50%
• Tests	20%
Participation	20%

You will receive a mid-semester evaluation to let you know how you have been doing up to that

point.		
Notes:		

Course Rubrics

ELEMENT	Exemplary (3 points)	Proficient (2 points)	Partially Proficient (1 point)	Unsatisfactory (0 points)	POINTS
Algorithm	To understand basic algorithms				/3
	To write algorithms using linked structures such as List, trees, and graphs				/3
	To apply and implement learned algorithm design techniques to solve problems				/3
Data Structures	To describe the usage of various data structures				/3
	To design and apply appropriate data structures for solving problems				/3
	To understand how to choose the appropriate data structure to solve a problem				/3
Participation	Often asks questions and shows interest to deepen knowledge				/3
Posture	Always willing to help peers. Completes All class assignments. Often helps peers after finishing a class				/3
	assignment.			TOTAL POINTS:	/24